Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase.
نویسندگان
چکیده
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O==O bond cleavage occurs within the first 200 micros after reaction initiation; the presence of a uniquely stable Fe---O---O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV==O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A. , Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547-10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O---O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His---Tyr species to produce the product oxoferryl species, CuB2+---OH-, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O---O bond forming chemistry that occurs during O2 evolution in photosynthesis.
منابع مشابه
Direct detection of a dioxygen adduct of cytochrome a3 in the mixed valence cytochrome oxidase/dioxygen reaction.
Time-resolved resonance Raman spectra have been recorded during the reaction of mixed valence (a3+ a2+(3)) cytochrome oxidase with dioxygen at room temperature. In the spectrum recorded at 10 microseconds subsequent to carbon monoxide photolysis, a mode is observed at 572 cm-1 that shifts to 548 cm-1 when the experiment is repeated with 18O2. The appearance of this mode is dependent upon the la...
متن کاملProbing protonation/deprotonation of tyrosine residues in cytochrome ba3 oxidase from Thermus thermophilus by time-resolved step-scan Fourier transform infrared spectroscopy.
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of T...
متن کاملTime-resolved optical absorption studies of cytochrome oxidase dynamics.
Time-resolved spectroscopic studies in our laboratory of bovine heart cytochrome c oxidase dynamics are summarized. Intramolecular electron transfer was investigated upon photolysis of CO from the mixed-valence enzyme, by pulse radiolysis, and upon light-induced electron injection into the cytochrome c/cytochrome oxidase complex from a novel photoactivatable dye. The reduction of dioxygen to wa...
متن کاملMillion-fold activation of the [Fe2(μ-O)2] diamond core for C-H bond cleavage
In biological systems, the cleavage of strong C-H bonds is often carried out by iron centres-such as that of methane monooxygenase in methane hydroxylation-through dioxygen activation mechanisms. High valent species with [Fe(2)(micro-O)(2)] diamond cores are thought to act as the oxidizing moieties, but the synthesis of complexes that cleave strong C-H bonds efficiently has remained a challenge...
متن کاملCO impedes superfast O2 binding in ba3 cytochrome oxidase from Thermus thermophilus.
Kinetic studies of heme-copper terminal oxidases using the CO flow-flash method are potentially compromised by the fate of the photodissociated CO. In this time-resolved optical absorption study, we compared the kinetics of dioxygen reduction by ba(3) cytochrome c oxidase from Thermus thermophilus in the absence and presence of CO using a photolabile O(2)-carrier. A novel double-laser excitatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 14 شماره
صفحات -
تاریخ انتشار 1998